Source code for galsim.fouriersqrt

# Copyright (c) 2012-2023 by the GalSim developers team on GitHub
# https://github.com/GalSim-developers
#
# This file is part of GalSim: The modular galaxy image simulation toolkit.
# https://github.com/GalSim-developers/GalSim
#
# GalSim is free software: redistribution and use in source and binary forms,
# with or without modification, are permitted provided that the following
# conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
#    list of conditions, and the disclaimer given in the accompanying LICENSE
#    file.
# 2. Redistributions in binary form must reproduce the above copyright notice,
#    this list of conditions, and the disclaimer given in the documentation
#    and/or other materials provided with the distribution.
#

__all__ = [ 'FourierSqrt', 'FourierSqrtProfile' ]

import numpy as np
import copy

from . import _galsim
from .gsparams import GSParams
from .gsobject import GSObject
from .utilities import lazy_property
from .errors import galsim_warn
from . import chromatic as chrom


[docs]def FourierSqrt(obj, gsparams=None, propagate_gsparams=True): """A function for computing the Fourier-space square root of either a `GSObject` or `ChromaticObject`. The FourierSqrt function is principally used for doing an optimal coaddition algorithm originally developed by Nick Kaiser (but unpublished) and also described by Zackay & Ofek 2015 (http://adsabs.harvard.edu/abs/2015arXiv151206879Z). See the script make_coadd.py in the GalSim/examples directory for an example of how it works. This function will inspect its input argument to decide if a `FourierSqrtProfile` object or a `ChromaticFourierSqrtProfile` object is required to represent the operation applied to a surface brightness profile. Parameters: obj: The object to compute the Fourier-space square root of. gsparams: An optional `GSParams` argument. [default: None] propagate_gsparams: Whether to propagate gsparams to the transformed object. This is normally a good idea, but there may be use cases where one would not want to do this. [default: True] Returns: a `FourierSqrtProfile` or `ChromaticFourierSqrtProfile` instance as appropriate. """ if isinstance(obj, chrom.ChromaticObject): return chrom.ChromaticFourierSqrtProfile(obj, gsparams=gsparams, propagate_gsparams=propagate_gsparams) elif isinstance(obj, GSObject): return FourierSqrtProfile(obj, gsparams=gsparams, propagate_gsparams=propagate_gsparams) else: raise TypeError("Argument to FourierSqrt must be either a GSObject or a ChromaticObject.")
[docs]class FourierSqrtProfile(GSObject): """A class for computing the Fourier-space sqrt of a `GSObject`. The FourierSqrtProfile class represents the Fourier-space square root of another profile. Note that the FourierSqrtProfile class, or compound objects (Sum, Convolution) that include a FourierSqrtProfile as one of the components cannot be photon-shot using the 'phot' method of `GSObject.drawImage` method. You may also specify a ``gsparams`` argument. See the docstring for `GSParams` for more information about this option. Note: if ``gsparams`` is unspecified (or None), then the FourierSqrtProfile instance inherits the same `GSParams` as the object being operated on. The normal way to use this class is to use the `FourierSqrt` factory function:: >>> fourier_sqrt = galsim.FourierSqrt(obj) Parameters: obj: The object to compute Fourier-space square root of. gsparams: An optional `GSParams` argument. [default: None] propagate_gsparams: Whether to propagate gsparams to the transformed object. This is normally a good idea, but there may be use cases where one would not want to do this. [default: True] """ _sqrt2 = 1.4142135623730951 _has_hard_edges = False _is_analytic_x = False def __init__(self, obj, gsparams=None, propagate_gsparams=True): if not isinstance(obj, GSObject): raise TypeError("Argument to FourierSqrtProfile must be a GSObject.") # Save the original object as an attribute, so it can be inspected later if necessary. self._gsparams = GSParams.check(gsparams, obj.gsparams) self._propagate_gsparams = propagate_gsparams if self._propagate_gsparams: self._orig_obj = obj.withGSParams(self._gsparams) else: self._orig_obj = obj @property def orig_obj(self): """The original object being Fourier sqrt-ed. """ return self._orig_obj @property def _noise(self): if self.orig_obj.noise is not None: galsim_warn("Unable to propagate noise in galsim.FourierSqrtProfile") return None
[docs] def withGSParams(self, gsparams=None, **kwargs): """Create a version of the current object with the given gsparams .. note:: Unless you set ``propagate_gsparams=False``, this method will also update the gsparams of the wrapped component object. """ if gsparams == self.gsparams: return self ret = copy.copy(self) ret._gsparams = GSParams.check(gsparams, self.gsparams, **kwargs) if self._propagate_gsparams: ret._orig_obj = self._orig_obj.withGSParams(ret._gsparams) return ret
def __eq__(self, other): return (self is other or (isinstance(other, FourierSqrtProfile) and self.orig_obj == other.orig_obj and self.gsparams == other.gsparams and self._propagate_gsparams == other._propagate_gsparams)) def __hash__(self): return hash(("galsim.FourierSqrtProfile", self.orig_obj, self.gsparams, self._propagate_gsparams)) def __repr__(self): return 'galsim.FourierSqrtProfile(%r, gsparams=%r, propagate_gsparams=%r)'%( self.orig_obj, self.gsparams, self._propagate_gsparams) def __str__(self): return 'galsim.FourierSqrt(%s)'%self.orig_obj def _prepareDraw(self): self.orig_obj._prepareDraw() @property def _maxk(self): return self.orig_obj.maxk @property def _stepk(self): return self.orig_obj.stepk * self._sqrt2 @property def _is_axisymmetric(self): return self.orig_obj.is_axisymmetric @property def _is_analytic_k(self): return self.orig_obj.is_analytic_k @property def _centroid(self): return 0.5 * self.orig_obj.centroid @property def _flux(self): return np.sqrt(self.orig_obj.flux) @property def _positive_flux(self): return np.sqrt(self.orig_obj.positive_flux) @property def _negative_flux(self): return np.sqrt(self.orig_obj.negative_flux) @lazy_property def _flux_per_photon(self): return self._calculate_flux_per_photon() @property def _max_sb(self): # In this case, we want the autoconvolution of this object to get back to the # maxSB value of the original obj # flux * maxSB / 2 = maxSB_orig # maxSB = 2 * maxSB_orig / flux return 2. * self.orig_obj.max_sb / self.flux def _kValue(self, pos): return np.sqrt(self.orig_obj._kValue(pos)) def _drawKImage(self, image, jac=None): self.orig_obj._drawKImage(image, jac) image.array[:,:] = np.sqrt(image.array)