Source code for galsim.gsparams

# Copyright (c) 2012-2023 by the GalSim developers team on GitHub
# https://github.com/GalSim-developers
#
# This file is part of GalSim: The modular galaxy image simulation toolkit.
# https://github.com/GalSim-developers/GalSim
#
# GalSim is free software: redistribution and use in source and binary forms,
# with or without modification, are permitted provided that the following
# conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
#    list of conditions, and the disclaimer given in the accompanying LICENSE
#    file.
# 2. Redistributions in binary form must reproduce the above copyright notice,
#    this list of conditions, and the disclaimer given in the documentation
#    and/or other materials provided with the distribution.
#

__all__ = [ 'GSParams' ]

import copy

from . import _galsim

[docs]class GSParams: """GSParams stores a set of numbers that govern how a `GSObject` makes various speed/accuracy tradeoff decisions. All `GSObject` classes can take an optional parameter named ``gsparams``, which would be an instance of this class. e.g.:: >>> gsp = galsim.GSParams(folding_threshold=1.e-3) >>> gal = galsim.Sersic(n=3.4, half_light_radius=3.2, flux=200, gsparams=gsp) One can also update the parameters for an existing object using the method `GSObject.withGSParams`. e.g.:: >>> gal = gal.withGSParams(kvalue_accuracy=1.e-8) All parameters have reasonable default values. You only need to specify the ones you want to change. Parameters: minimum_fft_size: The minimum size of any FFT that may need to be performed. [default: 128] maximum_fft_size: The maximum allowed size of an image for performing an FFT. This is more about memory use than accuracy. We have this maximum value to help prevent the user from accidentally trying to perform an extremely large FFT that crashes the program. Instead, GalSim will raise an exception indicating that the image is too large, which is often a sign of an error in the user's code. However, if you have the memory to handle it, you can raise this limit to allow the calculation to happen. [default: 8192] folding_threshold: This sets a maximum amount of real space folding that is allowed, an effect caused by the periodic nature of FFTs. FFTs implicitly use periodic boundary conditions, and a profile specified on a finite grid in Fourier space corresponds to a real space image that will have some overlap with the neighboring copies of the real space profile. As the step size in k increases, the spacing between neighboring aliases in real space decreases, increasing the amount of folded, overlapping flux. ``folding_threshold`` is used to set an appropriate step size in k to allow at most this fraction of the flux to be folded. This parameter is also relevant when you let GalSim decide how large an image to use for your object. The image is made to be large enough that at most a fraction ``folding_threshold`` of the total flux is allowed to fall off the edge of the image. [default: 5.e-3] stepk_minimum_hlr: In addition to the above constraint for aliasing, also set stepk such that pi/stepk is at least ``stepk_minimum_hlr`` times the profile's half-light radius (for profiles that have a well-defined half-light radius). [default: 5] maxk_threshold: This sets the maximum amplitude of the high frequency modes in Fourier space that are excluded by truncating the FFT at some maximum k value. Lowering this parameter can help minimize the effect of "ringing" if you see that in your images. [default: 1.e-3] kvalue_accuracy: This sets the accuracy of values in Fourier space. Whenever there is some kind of approximation to be made in the calculation of a Fourier space value, the error in the approximation is constrained to be no more than this value times the total flux. [default: 1.e-5] xvalue_accuracy: This sets the accuracy of values in real space. Whenever there is some kind of approximation to be made in the calculation of a real space value, the error in the approximation is constrained to be no more than this value times the total flux. [default: 1.e-5] table_spacing: Several profiles use lookup tables for either the Hankel transform (`Sersic`, `Moffat`) or the real space radial function (`Kolmogorov`). We try to estimate a good spacing between values in the lookup tables based on either ``xvalue_accuracy`` or ``kvalue_accuracy`` as appropriate. However, you may change the spacing with this parameter. Using ``table_spacing < 1`` will use a spacing value that is that much smaller than the default, which should produce more accurate interpolations. [default: 1] realspace_relerr: This sets the relative error tolerance for real-space integration. [default: 1.e-4] realspace_abserr: This sets the absolute error tolerance for real-space integration. [default: 1.e-6] The estimated integration error for the flux value in each pixel when using the real-space rendering method (either explicitly with ``method='real_space'`` or if it is triggered automatically with ``method='auto'``) is constrained to be no larger than either ``realspace_relerr`` times the pixel flux or ``realspace_abserr`` times the object's total flux. integration_relerr: The relative error tolerance for integrations other than real-space rendering. [default: 1.e-6] integration_abserr: The absolute error tolerance for integrations other than real-space rendering. [default: 1.e-8] shoot_accuracy: This sets the relative accuracy on the total flux when photon shooting. The photon shooting algorithm at times needs to make approximations, such as how high in radius it needs to sample the radial profile. When such approximations need to be made, it makes sure that the resulting fractional error in the flux will be at most this much. [default: 1.e-5] After construction, all of the above parameters are available as read-only attributes. """ def __init__(self, minimum_fft_size=128, maximum_fft_size=8192, folding_threshold=5.e-3, stepk_minimum_hlr=5, maxk_threshold=1.e-3, kvalue_accuracy=1.e-5, xvalue_accuracy=1.e-5, table_spacing=1, realspace_relerr=1.e-4, realspace_abserr=1.e-6, integration_relerr=1.e-6, integration_abserr=1.e-8, shoot_accuracy=1.e-5, allowed_flux_variation=0.81, range_division_for_extrema=32, small_fraction_of_flux=1.e-4): self._minimum_fft_size = int(minimum_fft_size) self._maximum_fft_size = int(maximum_fft_size) self._folding_threshold = float(folding_threshold) self._stepk_minimum_hlr = float(stepk_minimum_hlr) self._maxk_threshold = float(maxk_threshold) self._kvalue_accuracy = float(kvalue_accuracy) self._xvalue_accuracy = float(xvalue_accuracy) self._table_spacing = int(table_spacing) self._realspace_relerr = float(realspace_relerr) self._realspace_abserr = float(realspace_abserr) self._integration_relerr = float(integration_relerr) self._integration_abserr = float(integration_abserr) self._shoot_accuracy = float(shoot_accuracy) if allowed_flux_variation != 0.81: from .deprecated import depr depr('allowed_flux_variation', 2.1, "", "This parameter is no longer used.") if range_division_for_extrema != 32: from .deprecated import depr depr('range_division_for_extrema', 2.1, "", "This parameter is no longer used.") if small_fraction_of_flux != 1.e-4: from .deprecated import depr depr('small_fraction_of_flux', 2.1, "", "This parameter is no longer used.") self._gsp = _galsim.GSParams(*self._getinitargs()) # Make all the attributes read-only @property def minimum_fft_size(self): return self._minimum_fft_size @property def maximum_fft_size(self): return self._maximum_fft_size @property def folding_threshold(self): return self._folding_threshold @property def stepk_minimum_hlr(self): return self._stepk_minimum_hlr @property def maxk_threshold(self): return self._maxk_threshold @property def kvalue_accuracy(self): return self._kvalue_accuracy @property def xvalue_accuracy(self): return self._xvalue_accuracy @property def table_spacing(self): return self._table_spacing @property def realspace_relerr(self): return self._realspace_relerr @property def realspace_abserr(self): return self._realspace_abserr @property def integration_relerr(self): return self._integration_relerr @property def integration_abserr(self): return self._integration_abserr @property def shoot_accuracy(self): return self._shoot_accuracy
[docs] @staticmethod def check(gsparams, default=None, **kwargs): """Checks that gsparams is either a valid GSParams instance or None. In the former case, it returns gsparams, in the latter it returns default (GSParams.default if no other default specified). """ if gsparams is None: gsparams = default if default is not None else GSParams.default elif not isinstance(gsparams, GSParams): raise TypeError("Invalid GSParams: %s"%gsparams) return gsparams.withParams(**kwargs)
[docs] def withParams(self, **kwargs): """Return a `GSParams` that is identical to the current one except for any keyword arguments given here, which supersede the current value. """ if len(kwargs) == 0: return self else: ret = copy.copy(self) for k in kwargs: if not hasattr(ret, '_' + k): raise TypeError('parameter %s is invalid'%k) setattr(ret, '_' + k, kwargs[k]) ret._gsp = _galsim.GSParams(*ret._getinitargs()) return ret
[docs] @staticmethod def combine(gsp_list): """Combine a list of `GSParams` instances using the most restrictive parameter from each. Uses the minimum value for most parameters. For the following parameters, it uses the maximum numerical value: minimum_fft_size, maximum_fft_size, stepk_minimum_hlr. """ if len(gsp_list) == 1: return gsp_list[0] elif all(g == gsp_list[0] for g in gsp_list[1:]): return gsp_list[0] else: return GSParams( max([g.minimum_fft_size for g in gsp_list if g is not None]), max([g.maximum_fft_size for g in gsp_list if g is not None]), min([g.folding_threshold for g in gsp_list if g is not None]), max([g.stepk_minimum_hlr for g in gsp_list if g is not None]), min([g.maxk_threshold for g in gsp_list if g is not None]), min([g.kvalue_accuracy for g in gsp_list if g is not None]), min([g.xvalue_accuracy for g in gsp_list if g is not None]), min([g.table_spacing for g in gsp_list if g is not None]), min([g.realspace_relerr for g in gsp_list if g is not None]), min([g.realspace_abserr for g in gsp_list if g is not None]), min([g.integration_relerr for g in gsp_list if g is not None]), min([g.integration_abserr for g in gsp_list if g is not None]), min([g.shoot_accuracy for g in gsp_list if g is not None]))
# Define once the order of args in __init__, since we use it a few times. def _getinitargs(self): return (int(self.minimum_fft_size), int(self.maximum_fft_size), self.folding_threshold, self.stepk_minimum_hlr, self.maxk_threshold, self.kvalue_accuracy, self.xvalue_accuracy, self.table_spacing, self.realspace_relerr, self.realspace_abserr, self.integration_relerr, self.integration_abserr, self.shoot_accuracy) def __getstate__(self): return self._getinitargs() def __setstate__(self, state): self.__init__(*state) def __repr__(self): return 'galsim.GSParams(%d,%d,%r,%r,%r,%r,%r,%d,%r,%r,%r,%r,%r)'% \ self._getinitargs() def __eq__(self, other): return (self is other or (isinstance(other, GSParams) and self._getinitargs() == other._getinitargs())) def __ne__(self, other): return not self.__eq__(other) def __hash__(self): return hash(repr(self))
# We use the default a lot, so make it a class attribute. GSParams.default = GSParams()