Source code for galsim.image

# Copyright (c) 2012-2023 by the GalSim developers team on GitHub
# https://github.com/GalSim-developers
#
# This file is part of GalSim: The modular galaxy image simulation toolkit.
# https://github.com/GalSim-developers/GalSim
#
# GalSim is free software: redistribution and use in source and binary forms,
# with or without modification, are permitted provided that the following
# conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
#    list of conditions, and the disclaimer given in the accompanying LICENSE
#    file.
# 2. Redistributions in binary form must reproduce the above copyright notice,
#    this list of conditions, and the disclaimer given in the documentation
#    and/or other materials provided with the distribution.
#

__all__ = [ 'Image', '_Image',
            'ImageS', 'ImageI', 'ImageF', 'ImageD',
            'ImageCF', 'ImageCD', 'ImageUS', 'ImageUI', ]

import numpy as np

from . import _galsim
from .position import PositionI, _PositionD, parse_pos_args
from .bounds import BoundsI, BoundsD, _BoundsI
from ._utilities import lazy_property
from .errors import GalSimError, GalSimBoundsError, GalSimValueError, GalSimImmutableError
from .errors import GalSimUndefinedBoundsError, GalSimIncompatibleValuesError, convert_cpp_errors

# Sometimes (on 32-bit systems) there are two numpy.int32 types.  This can lead to some confusion
# when doing arithmetic with images.  So just make sure both of them point to ImageViewI in the
# _cpp_type dict.  One of them is what you get when you just write numpy.int32.  The other is
# what numpy decides an int16 + int32 is.
# For more information regarding this rather unexpected behaviour for numpy.int32 types, see
# the following (closed, marked "wontfix") ticket on the numpy issue tracker:
# http://projects.scipy.org/numpy/ticket/1246

alt_int32 = (np.array([0], dtype=np.int16) + np.array([0], dtype=np.int32)).dtype.type


[docs]class Image: """A class for storing image data along with the pixel scale or WCS information The Image class encapsulates all the relevant information about an image including a NumPy array for the pixel values, a bounding box, and some kind of WCS that converts between pixel coordinates and world coordinates. The NumPy array may be constructed by the Image class itself, or an existing array can be provided by the user. This class creates shallow copies unless a deep copy is explicitly requested using the `copy` method. The main reason for this is that it allows users to work directly with and modify subimages of larger images (for example, to successively draw many galaxies into one large image). For other implications of this convention, see the description of initialization instructions below. In most applications with images, we will use (x,y) to refer to the coordinates. We adopt the same meaning for these coordinates as most astronomy applications do: ds9, SAOImage, SExtractor, etc. all treat x as the column number and y as the row number. However, this is different from the default convention used by numpy. In numpy, the access is by [row_num,col_num], which means this is really [y,x] in terms of the normal x,y values. Users are typically insulated from this concern by the Image API, but if you access the numpy array directly via the ``array`` attribute, you will need to be careful about this difference. There are 6 data types that the Image can use for the data values. These are ``numpy.uint16``, ``numpy.uint32``, ``numpy.int16``, ``numpy.int32``, ``numpy.float32``, and ``numpy.float64``. If you are constructing a new Image from scratch, the default is ``numpy.float32``, but you can specify one of the other data types. There are several ways to construct an Image: (Optional arguments are shown with their default values after the = sign.) ``Image(ncol, nrow, dtype=numpy.float32, init_value=0, xmin=1, ymin=1, ...)`` This constructs a new image, allocating memory for the pixel values according to the number of columns and rows. You can specify the data type as ``dtype`` if you want. The default is ``numpy.float32`` if you don't specify it. You can also optionally provide an initial value for the pixels, which defaults to 0. The optional ``xmin,ymin`` allow you to specify the location of the lower-left pixel, which defaults to (1,1). Reminder, with our convention for x,y coordinates described above, ncol is the number of pixels in the x direction, and nrow is the number of pixels in the y direction. ``Image(bounds, dtype=numpy.float32, init_value=0, ...)`` This constructs a new image, allocating memory for the pixel values according to a given `Bounds` object. Particularly, the bounds should be a `BoundsI` instance. You can specify the data type as ``dtype`` if you want. The default is ``numpy.float32`` if you don't specify it. You can also optionally provide an initial value for the pixels, which defaults to 0. ``Image(array, xmin=1, ymin=1, make_const=False, copy=False ...)`` This views an existing NumPy array as an Image, where updates to either the image or the original array will affect the other one. The data type is taken from ``array.dtype``, which must be one of the allowed types listed above. You can also optionally set the origin ``xmin, ymin`` if you want it to be something other than (1,1). You can also optionally force the Image to be read-only with ``make_const=True``, though if the original NumPy array is modified then the contents of ``Image.array`` will change. If you want to make a copy of the input array, rather than just view the existing array, you can force a copy with:: >>> image = galsim.Image(array, copy=True) ``Image(image, dtype=image.dtype, copy=True)`` This creates a copy of an Image, possibly changing the type. e.g.:: >>> image_float = galsim.Image(64, 64) # default dtype=numpy.float32 >>> image_double = galsim.Image(image_float, dtype=numpy.float64) You can see a list of valid values for dtype in ``galsim.Image.valid_dtypes``. Without the ``dtype`` argument, this is equivalent to ``image.copy()``, which makes a deep copy. If you want a copy that shares data with the original, see the `view` method. If you only want to enforce the image to have a given type and not make a copy if the array is already the correct type, you can use, e.g.:: >>> image_double = galsim.Image(image, dtype=numpy.float64, copy=False) You can specify the ``ncol``, ``nrow``, ``bounds``, ``array``, or ``image`` parameters by keyword argument if you want, or you can pass them as simple arg as shown aboves, and the constructor will figure out what they are. The other keyword arguments (shown as ... above) relate to the conversion between sky coordinates, which is how all the GalSim objects are defined, and the pixel coordinates. There are three options for this: scale You can optionally specify a pixel scale to use. This would normally have units arcsec/pixel, but it doesn't have to be arcsec. If you want to use different units for the physical scale of your galsim objects, then the same unit would be used here. wcs A WCS object that provides a non-trivial mapping between sky units and pixel units. The ``scale`` parameter is equivalent to ``wcs=PixelScale(scale)``. But there are a number of more complicated options. See the WCS class for more details. None If you do not provide either of the above, then the conversion is undefined. When drawing onto such an image, a suitable pixel scale will be automatically set according to the Nyquist scale of the object being drawn. After construction, you can set or change the scale or wcs with:: >>> image.scale = new_scale >>> image.wcs = new_wcs Note that ``image.scale`` will only work if the WCS is a `PixelScale`. Once you set the wcs to be something non-trivial, then you must interact with it via the ``wcs`` attribute. The ``image.scale`` syntax will raise an exception. There are also two read-only attributes:: >>> image.bounds >>> image.array The ``array`` attribute is a NumPy array of the Image's pixels. The individual elements in the array attribute are accessed as ``image.array[y,x]``, matching the standard NumPy convention, while the Image class's own accessor uses either ``(x,y)`` or ``[x,y]``. That is, the following are equivalent:: >>> ixy = image(x,y) >>> ixy = image[x,y] >>> ixy = image.array[y,x] >>> ixy = image.getValue(x,y) Similarly, for setting individual pixel values, the following are equivalent:: >>> image[x,y] = new_ixy >>> image.array[y,x] = new_ixy >>> image.setValue(x,y,new_ixy) """ _cpp_type = { np.uint16 : _galsim.ImageViewUS, np.uint32 : _galsim.ImageViewUI, np.int16 : _galsim.ImageViewS, np.int32 : _galsim.ImageViewI, np.float32 : _galsim.ImageViewF, np.float64 : _galsim.ImageViewD, np.complex64 : _galsim.ImageViewCF, np.complex128 : _galsim.ImageViewCD, } _cpp_valid_dtypes = list(_cpp_type.keys()) _alias_dtypes = { int : np.int32, # So that user gets what they would expect float : np.float64, # if using dtype=int or float or complex complex : np.complex128, np.int64 : np.int32, # Not equivalent, but will convert } # Note: Numpy uses int64 for int on 64 bit machines. We don't implement int64 at all, # so we cannot quite match up to the numpy convention for dtype=int. e.g. via # int : numpy.zeros(1,dtype=int).dtype.type # If this becomes too confusing, we might need to add an ImageL class that uses int64. # Hard to imagine a use case where this would be required though... # This one is in the public API. (No leading underscore.) valid_dtypes = _cpp_valid_dtypes + list(_alias_dtypes.keys()) def __init__(self, *args, **kwargs): # Parse the args, kwargs ncol = None nrow = None bounds = None array = None image = None if len(args) > 2: raise TypeError("Error, too many unnamed arguments to Image constructor") elif len(args) == 2: ncol = args[0] nrow = args[1] xmin = kwargs.pop('xmin',1) ymin = kwargs.pop('ymin',1) elif len(args) == 1: if isinstance(args[0], np.ndarray): array = args[0] array, xmin, ymin = self._get_xmin_ymin(array, kwargs) make_const = kwargs.pop('make_const',False) elif isinstance(args[0], BoundsI): bounds = args[0] elif isinstance(args[0], (list, tuple)): array = np.array(args[0]) array, xmin, ymin = self._get_xmin_ymin(array, kwargs) make_const = kwargs.pop('make_const',False) elif isinstance(args[0], Image): image = args[0] else: raise TypeError("Unable to parse %s as an array, bounds, or image."%args[0]) else: if 'array' in kwargs: array = kwargs.pop('array') array, xmin, ymin = self._get_xmin_ymin(array, kwargs) make_const = kwargs.pop('make_const',False) elif 'bounds' in kwargs: bounds = kwargs.pop('bounds') elif 'image' in kwargs: image = kwargs.pop('image') else: ncol = kwargs.pop('ncol',None) nrow = kwargs.pop('nrow',None) xmin = kwargs.pop('xmin',1) ymin = kwargs.pop('ymin',1) # Pop off the other valid kwargs: dtype = kwargs.pop('dtype', None) init_value = kwargs.pop('init_value', None) scale = kwargs.pop('scale', None) wcs = kwargs.pop('wcs', None) copy = kwargs.pop('copy', None) # Check that we got them all if kwargs: raise TypeError("Image constructor got unexpected keyword arguments: %s",kwargs) # Figure out what dtype we want: dtype = Image._alias_dtypes.get(dtype,dtype) if dtype is not None and dtype not in Image.valid_dtypes: raise GalSimValueError("Invalid dtype.", dtype, Image.valid_dtypes) if array is not None: if copy is None: copy = False if dtype is None: dtype = array.dtype.type if dtype in Image._alias_dtypes: dtype = Image._alias_dtypes[dtype] array = array.astype(dtype, copy=copy) elif dtype not in Image._cpp_valid_dtypes: raise GalSimValueError("Invalid dtype of provided array.", array.dtype, Image._cpp_valid_dtypes) elif copy: array = np.array(array) else: array = array.astype(dtype, copy=copy) # Be careful here: we have to watch out for little-endian / big-endian issues. # The path of least resistance is to check whether the array.dtype is equal to the # native one (using the dtype.isnative flag), and if not, make a new array that has a # type equal to the same one but with the appropriate endian-ness. if not array.dtype.isnative: array = array.astype(array.dtype.newbyteorder('=')) self._dtype = array.dtype.type elif dtype is not None: self._dtype = dtype else: self._dtype = np.float32 # Construct the image attribute if (ncol is not None or nrow is not None): if ncol is None or nrow is None: raise GalSimIncompatibleValuesError( "Both nrow and ncol must be provided", ncol=ncol, nrow=nrow) if ncol != int(ncol) or nrow != int(nrow): raise TypeError("nrow, ncol must be integers") ncol = int(ncol) nrow = int(nrow) self._array = self._make_empty(shape=(nrow,ncol), dtype=self._dtype) self._bounds = BoundsI(xmin, xmin+ncol-1, ymin, ymin+nrow-1) if init_value: self.fill(init_value) elif bounds is not None: if not isinstance(bounds, BoundsI): raise TypeError("bounds must be a galsim.BoundsI instance") self._array = self._make_empty(bounds.numpyShape(), dtype=self._dtype) self._bounds = bounds if init_value: self.fill(init_value) elif array is not None: self._array = array.view() nrow,ncol = array.shape self._bounds = BoundsI(xmin, xmin+ncol-1, ymin, ymin+nrow-1) if make_const or not array.flags.writeable: self._array.flags.writeable = False if init_value is not None: raise GalSimIncompatibleValuesError( "Cannot specify init_value with array", init_value=init_value, array=array) elif image is not None: if not isinstance(image, Image): raise TypeError("image must be an Image") if init_value is not None: raise GalSimIncompatibleValuesError( "Cannot specify init_value with image", init_value=init_value, image=image) if wcs is None and scale is None: wcs = image.wcs self._bounds = image.bounds if dtype is None: self._dtype = image.dtype else: # Allow dtype to force a retyping of the provided image # e.g. im = ImageF(...) # im2 = ImageD(im) self._dtype = dtype if copy is False: self._array = image.array.astype(self._dtype, copy=False) else: self._array = self._make_empty(shape=image.bounds.numpyShape(), dtype=self._dtype) self._array[:,:] = image.array[:,:] else: self._array = np.zeros(shape=(1,1), dtype=self._dtype) self._bounds = BoundsI() if init_value is not None: raise GalSimIncompatibleValuesError( "Cannot specify init_value without setting an initial size", init_value=init_value, ncol=ncol, nrow=nrow, bounds=bounds) # Construct the wcs attribute if scale is not None: if wcs is not None: raise GalSimIncompatibleValuesError( "Cannot provide both scale and wcs to Image constructor", wcs=wcs, scale=scale) self.wcs = PixelScale(float(scale)) else: if wcs is not None and not isinstance(wcs, BaseWCS): raise TypeError("wcs parameters must be a galsim.BaseWCS instance") self.wcs = wcs @staticmethod def _get_xmin_ymin(array, kwargs): """A helper function for parsing xmin, ymin, bounds options with a given array """ if not isinstance(array, np.ndarray): raise TypeError("array must be a numpy.ndarray instance") xmin = kwargs.pop('xmin',1) ymin = kwargs.pop('ymin',1) if 'bounds' in kwargs: b = kwargs.pop('bounds') if not isinstance(b, BoundsI): raise TypeError("bounds must be a galsim.BoundsI instance") if b.xmax-b.xmin+1 != array.shape[1]: raise GalSimIncompatibleValuesError( "Shape of array is inconsistent with provided bounds", array=array, bounds=b) if b.ymax-b.ymin+1 != array.shape[0]: raise GalSimIncompatibleValuesError( "Shape of array is inconsistent with provided bounds", array=array, bounds=b) if b.isDefined(): xmin = b.xmin ymin = b.ymin else: # Indication that array is formally undefined, even though provided. if 'dtype' not in kwargs: kwargs['dtype'] = array.dtype.type array = None xmin = None ymin = None elif array.shape[1] == 0: # Another way to indicate that we don't have a defined image. if 'dtype' not in kwargs: kwargs['dtype'] = array.dtype.type array = None xmin = None ymin = None return array, xmin, ymin def __repr__(self): s = 'galsim.Image(bounds=%r' % self.bounds if self.bounds.isDefined(): s += ', array=\n%r' % self.array s += ', wcs=%r' % self.wcs if self.isconst: s += ', make_const=True' s += ')' return s def __str__(self): # Get the type name without the <type '...'> part. t = str(self.dtype).split("'")[1] if self.wcs is not None and self.wcs._isPixelScale: return 'galsim.Image(bounds=%s, scale=%s, dtype=%s)'%(self.bounds, self.scale, t) else: return 'galsim.Image(bounds=%s, wcs=%s, dtype=%s)'%(self.bounds, self.wcs, t) # Pickling almost works out of the box, but numpy arrays lose their non-writeable flag # when pickled, so make sure to set it to preserve const Images. def __getstate__(self): d = self.__dict__.copy() d.pop('_image',None) return d, self.isconst def __setstate__(self, args): d, isconst = args self.__dict__ = d if isconst: self._array.flags.writeable = False # Read-only attributes: @property def dtype(self): """The dtype of the underlying numpy array. """ return self._dtype @property def bounds(self): """The bounds of the `Image`. """ return self._bounds @property def array(self): """The underlying numpy array. """ return self._array @property def nrow(self): """The number of rows in the image """ return self._array.shape[0] @property def ncol(self): """The number of columns in the image """ return self._array.shape[1] @property def isconst(self): """Whether the `Image` is constant. I.e. modifying its values is an error. """ return self._array.flags.writeable == False @property def iscomplex(self): """Whether the `Image` values are complex. """ return self._array.dtype.kind == 'c' @property def isinteger(self): """Whether the `Image` values are integral. """ return self._array.dtype.kind in ('i','u') @property def iscontiguous(self): """Indicates whether each row of the image is contiguous in memory. Note: it is ok for the end of one row to not be contiguous with the start of the next row. This just checks that each individual row has a stride of 1. """ return self._array.strides[1]//self._array.itemsize == 1 @lazy_property def _image(self): cls = self._cpp_type[self.dtype] _data = self._array.__array_interface__['data'][0] return cls(_data, self._array.strides[1]//self._array.itemsize, self._array.strides[0]//self._array.itemsize, self._bounds._b) # Allow scale to work as a PixelScale wcs. @property def scale(self): """The pixel scale of the `Image`. Only valid if the wcs is a `PixelScale`. If the WCS is either not set (i.e. it is ``None``) or it is a `PixelScale`, then it is permissible to change the scale with:: >>> image.scale = new_pixel_scale """ try: return self.wcs.scale except Exception: if self.wcs: raise GalSimError( "image.wcs is not a simple PixelScale; scale is undefined.") from None else: return None @scale.setter def scale(self, value): if self.wcs is not None and not self.wcs._isPixelScale: raise GalSimError("image.wcs is not a simple PixelScale; scale is undefined.") else: self.wcs = PixelScale(value) # Convenience functions @property def xmin(self): """Alias for self.bounds.xmin.""" return self._bounds.xmin @property def xmax(self): """Alias for self.bounds.xmax.""" return self._bounds.xmax @property def ymin(self): """Alias for self.bounds.ymin.""" return self._bounds.ymin @property def ymax(self): """Alias for self.bounds.ymax.""" return self._bounds.ymax @property def outer_bounds(self): """The bounds of the outer edge of the pixels. Equivalent to galsim.BoundsD(im.xmin-0.5, im.xmax+0.5, im.ymin-0.5, im.ymax+0.5) """ return BoundsD(self.xmin-0.5, self.xmax+0.5, self.ymin-0.5, self.ymax+0.5) # real, imag for everything, even real images. @property def real(self): """Return the real part of an image. This is a property, not a function. So write ``im.real``, not ``im.real()``. This works for real or complex. For real images, it acts the same as `view`. """ return _Image(self.array.real, self.bounds, self.wcs) @property def imag(self): """Return the imaginary part of an image. This is a property, not a function. So write ``im.imag``, not ``im.imag()``. This works for real or complex. For real images, the returned array is read-only and all elements are 0. """ return _Image(self.array.imag, self.bounds, self.wcs) @property def conjugate(self): """Return the complex conjugate of an image. This works for real or complex. For real images, it acts the same as `view`. Note that for complex images, this is not a conjugate view into the original image. So changing the original image does not change the conjugate (or vice versa). """ return _Image(self.array.conjugate(), self.bounds, self.wcs)
[docs] def copy(self): """Make a copy of the `Image` """ return _Image(self.array.copy(), self.bounds, self.wcs)
[docs] def get_pixel_centers(self): """A convenience function to get the x and y values at the centers of the image pixels. Returns: (x, y), each of which is a numpy array the same shape as ``self.array`` """ x,y = np.meshgrid(np.arange(self.array.shape[1], dtype=float), np.arange(self.array.shape[0], dtype=float)) x += self.bounds.xmin y += self.bounds.ymin return x, y
def _make_empty(self, shape, dtype): """Helper function to make an empty numpy array of the given shape, making sure that the array is 16-btye aligned so it is usable by FFTW. """ # cf. http://stackoverflow.com/questions/9895787/memory-alignment-for-fast-fft-in-python-using-shared-arrrays nbytes = shape[0] * shape[1] * np.dtype(dtype).itemsize if nbytes == 0: # Make degenerate images have 1 element. Otherwise things get weird. return np.zeros(shape=(1,1), dtype=self._dtype) buf = np.zeros(nbytes + 16, dtype=np.uint8) start_index = -buf.__array_interface__['data'][0] % 16 a = buf[start_index:start_index + nbytes].view(dtype).reshape(shape) #assert a.ctypes.data % 16 == 0 return a
[docs] def resize(self, bounds, wcs=None): """Resize the image to have a new bounds (must be a `BoundsI` instance) Note that the resized image will have uninitialized data. If you want to preserve the existing data values, you should either use `subImage` (if you want a smaller portion of the current `Image`) or make a new `Image` and copy over the current values into a portion of the new image (if you are resizing to a larger `Image`). Parameters: bounds: The new bounds to resize to. wcs: If provided, also update the wcs to the given value. [default: None, which means keep the existing wcs] """ if self.isconst: raise GalSimImmutableError("Cannot modify an immutable Image", self) if not isinstance(bounds, BoundsI): raise TypeError("bounds must be a galsim.BoundsI instance") self._array = self._make_empty(shape=bounds.numpyShape(), dtype=self.dtype) self._bounds = bounds if wcs is not None: self.wcs = wcs
[docs] def subImage(self, bounds): """Return a view of a portion of the full image This is equivalent to self[bounds] """ if not isinstance(bounds, BoundsI): raise TypeError("bounds must be a galsim.BoundsI instance") if not self.bounds.isDefined(): raise GalSimUndefinedBoundsError("Attempt to access subImage of undefined image") if not self.bounds.includes(bounds): raise GalSimBoundsError("Attempt to access subImage not (fully) in image", bounds,self.bounds) i1 = bounds.ymin - self.ymin i2 = bounds.ymax - self.ymin + 1 j1 = bounds.xmin - self.xmin j2 = bounds.xmax - self.xmin + 1 subarray = self.array[i1:i2, j1:j2] # NB. The wcs is still accurate, since the sub-image uses the same (x,y) values # as the original image did for those pixels. It's only once you recenter or # reorigin that you need to update the wcs. So that's taken care of in im.shift. return _Image(subarray, bounds, self.wcs)
[docs] def setSubImage(self, bounds, rhs): """Set a portion of the full image to the values in another image This is equivalent to self[bounds] = rhs """ if self.isconst: raise GalSimImmutableError("Cannot modify the values of an immutable Image", self) self.subImage(bounds).copyFrom(rhs)
[docs] def __getitem__(self, *args): """Return either a subimage or a single pixel value. For example,:: >>> subimage = im[galsim.BoundsI(3,7,3,7)] >>> value = im[galsim.PositionI(5,5)] >>> value = im[5,5] """ if len(args) == 1: if isinstance(args[0], BoundsI): return self.subImage(*args) elif isinstance(args[0], PositionI): return self(*args) elif isinstance(args[0], tuple): return self.getValue(*args[0]) else: raise TypeError("image[index] only accepts BoundsI or PositionI for the index") elif len(args) == 2: return self(*args) else: raise TypeError("image[..] requires either 1 or 2 args")
[docs] def __setitem__(self, *args): """Set either a subimage or a single pixel to new values. For example,:: >>> im[galsim.BoundsI(3,7,3,7)] = im2 >>> im[galsim.PositionI(5,5)] = 17. >>> im[5,5] = 17. """ if len(args) == 2: if isinstance(args[0], BoundsI): self.setSubImage(*args) elif isinstance(args[0], PositionI): self.setValue(*args) elif isinstance(args[0], tuple): self.setValue(*args) else: raise TypeError("image[index] only accepts BoundsI or PositionI for the index") elif len(args) == 3: return self.setValue(*args) else: raise TypeError("image[..] requires either 1 or 2 args")
[docs] def wrap(self, bounds, hermitian=False): """Wrap the values in a image onto a given subimage and return the subimage. This would typically be used on a k-space image where you initially draw a larger image than you want for the FFT and then wrap it onto a smaller subset. This will cause aliasing of course, but this is often preferable to just using the smaller image without wrapping. For complex images of FFTs, one often only stores half the image plane with the implicit understanding that the function is Hermitian, so im(-x,-y) == im(x,y).conjugate(). In this case, the wrapping needs to work slightly differently, so you can specify that your image is implicitly Hermitian with the ``hermitian`` argument. Options are: hermitian=False (default) Normal non-Hermitian image. hermitian='x' Only x>=0 values are stored with x<0 values being implicitly Hermitian. In this case im.bounds.xmin and bounds.xmin must be 0. hermitian='y' Only y>=0 values are stored with y<0 values being implicitly Hermitian. In this case im.bounds.ymin and bounds.ymin must be 0. Also, in the two Hermitian cases, the direction that is not implicitly Hermitian must be symmetric in the image's bounds. The wrap bounds must be almost symmetric, but missing the most negative value. For example,:: >>> N = 100 >>> im_full = galsim.ImageCD(bounds=galsim.BoundsI(0,N/2,-N/2,N/2), scale=dk) >>> # ... fill with im[i,j] = FT(kx=i*dk, ky=j*dk) >>> N2 = 64 >>> im_wrap = im_full.wrap(galsim.BoundsI(0,N/2,-N2/2,N2/2-1, hermitian='x') This sets up im_wrap to be the properly Hermitian version of the data appropriate for passing to an FFT. Note that this routine modifies the original image (and not just the subimage onto which it is wrapped), so if you want to keep the original pristine, you should call ``wrapped_image = image.copy().wrap(bounds)``. Parameters: bounds: The bounds of the subimage onto which to wrap the full image. hermitian: Whether the image is implicitly Hermitian and if so, whether it is the x or y values that are not stored. [default: False] Returns: the subimage, image[bounds], after doing the wrapping. """ if not isinstance(bounds, BoundsI): raise TypeError("bounds must be a galsim.BoundsI instance") # Get this at the start to check for invalid bounds and raise the exception before # possibly writing data past the edge of the image. if not hermitian: return self._wrap(bounds, False, False) elif hermitian == 'x': if self.bounds.xmin != 0: raise GalSimIncompatibleValuesError( "hermitian == 'x' requires self.bounds.xmin == 0", hermitian=hermitian, bounds=self.bounds) if bounds.xmin != 0: raise GalSimIncompatibleValuesError( "hermitian == 'x' requires bounds.xmin == 0", hermitian=hermitian, bounds=bounds) return self._wrap(bounds, True, False) elif hermitian == 'y': if self.bounds.ymin != 0: raise GalSimIncompatibleValuesError( "hermitian == 'y' requires self.bounds.ymin == 0", hermitian=hermitian, bounds=self.bounds) if bounds.ymin != 0: raise GalSimIncompatibleValuesError( "hermitian == 'y' requires bounds.ymin == 0", hermitian=hermitian, bounds=bounds) return self._wrap(bounds, False, True) else: raise GalSimValueError("Invalid value for hermitian", hermitian, (False, 'x', 'y'))
[docs] def _wrap(self, bounds, hermx, hermy): """A version of `wrap` without the sanity checks. Equivalent to ``image.wrap(bounds, hermitian='x' if hermx else 'y' if hermy else False)`` """ ret = self.subImage(bounds) _galsim.wrapImage(self._image, bounds._b, hermx, hermy) return ret
[docs] def bin(self, nx, ny): """Bin the image pixels in blocks of nx x ny pixels. This returns a new image that is a binned version of the current image. Adjacent pixel values in nx x ny blocks are added together to produce the flux in each output pixel. If the current number of pixels in each direction is not a multiple of nx, ny, then the last pixel in each direction will be the sum of fewer than nx or ny pixels as needed. See also subsample, which is the opposite of this. If the wcs is a Jacobian (or simpler), the output image will have its wcs set properly. But if the wcs is more complicated, the output wcs would be fairly complicated to figure out properly, so we leave it as None. The user should set it themselves if required. Parameters: nx: The number of adjacent pixels in the x direction to add together into each output pixel. ny: The number of adjacent pixels in the y direction to add together into each output pixel. Returns: a new `Image` """ ncol = self.xmax - self.xmin + 1 nrow = self.ymax - self.ymin + 1 nbins_x = (ncol-1) // nx + 1 nbins_y = (nrow-1) // ny + 1 nbins = nbins_x * nbins_y # target_bins just provides a number from 0..nbins for each target pixel target_bins = np.arange(nbins).reshape(nbins_y, nbins_x) # current_bins is the same number for each pixel in the current image. current_bins = np.repeat(np.repeat(target_bins, ny, axis=0), nx, axis=1) current_bins = current_bins[0:nrow, 0:ncol] # bincount with weights is a tricky way to do the sum over the bins target_ar = np.bincount(current_bins.ravel(), weights=self.array.ravel()) target_ar = target_ar.reshape(target_bins.shape) if self.wcs is None or not self.wcs._isUniform: target_wcs = None else: if self.wcs._isPixelScale and nx == ny: target_wcs = PixelScale(self.scale * nx) else: dudx, dudy, dvdx, dvdy = self.wcs.jacobian().getMatrix().ravel() dudx *= nx dvdx *= nx dudy *= ny dvdy *= ny target_wcs = JacobianWCS(dudx, dudy, dvdx, dvdy) # Set the origin so that corresponding image positions correspond to the same world_pos x0 = (self.wcs.origin.x - self.xmin + 0.5) / nx + 0.5 y0 = (self.wcs.origin.y - self.ymin + 0.5) / ny + 0.5 target_wcs = target_wcs.shiftOrigin(_PositionD(x0,y0), self.wcs.world_origin) target_bounds = _BoundsI(1, nbins_x, 1, nbins_y) return _Image(target_ar, target_bounds, target_wcs)
[docs] def subsample(self, nx, ny, dtype=None): """Subdivide the image pixels into nx x ny sub-pixels. This returns a new image that is a subsampled version of the current image. Each pixel's flux is split (uniformly) into nx x ny smaller pixels. See also bin, which is the opposite of this. Note that subsample(nx,ny) followed by bin(nx,ny) is essentially a no op. If the wcs is a Jacobian (or simpler), the output image will have its wcs set properly. But if the wcs is more complicated, the output wcs would be fairly complicated to figure out properly, so we leave it as None. The user should set it themselves if required. Parameters: nx: The number of sub-pixels in the x direction for each original pixel. ny: The number of sub-pixels in the y direction for each original pixel. dtype: Optionally provide a dtype for the return image. [default: None, which means to use the same dtype as the original image] Returns: a new `Image` """ ncol = self.xmax - self.xmin + 1 nrow = self.ymax - self.ymin + 1 npix_x = ncol * nx npix_y = nrow * ny flux_factor = nx * ny target_ar = np.repeat(np.repeat(self.array, ny, axis=0), nx, axis=1) target_ar = target_ar.astype(dtype, copy=False) # Cute. This is a no op if dtype=None target_ar /= flux_factor if self.wcs is None or not self.wcs._isUniform: target_wcs = None else: if self.wcs._isPixelScale and nx == ny: target_wcs = PixelScale(self.scale / nx) else: dudx, dudy, dvdx, dvdy = self.wcs.jacobian().getMatrix().ravel() dudx /= nx dvdx /= nx dudy /= ny dvdy /= ny target_wcs = JacobianWCS(dudx, dudy, dvdx, dvdy) # Set the origin so that corresponding image positions correspond to the same world_pos x0 = (self.wcs.origin.x - self.xmin + 0.5) * nx + 0.5 y0 = (self.wcs.origin.y - self.ymin + 0.5) * ny + 0.5 target_wcs = target_wcs.shiftOrigin(_PositionD(x0,y0), self.wcs.world_origin) target_bounds = _BoundsI(1, npix_x, 1, npix_y) return _Image(target_ar, target_bounds, target_wcs)
[docs] def calculate_fft(self): """Performs an FFT of an `Image` in real space to produce a k-space `Image`. Note: the image will be padded with zeros as needed to make an image with bounds that look like ``BoundsI(-N/2, N/2-1, -N/2, N/2-1)``. The input image must have a `PixelScale` wcs. The output image will be complex (an `ImageCF` or `ImageCD` instance) and its scale will be 2pi / (N dx), where dx is the scale of the input image. Returns: an `Image` instance with the k-space image. """ if self.wcs is None: raise GalSimError("calculate_fft requires that the scale be set.") if not self.wcs._isPixelScale: raise GalSimError("calculate_fft requires that the image has a PixelScale wcs.") if not self.bounds.isDefined(): raise GalSimUndefinedBoundsError( "calculate_fft requires that the image have defined bounds.") No2 = max(-self.bounds.xmin, self.bounds.xmax+1, -self.bounds.ymin, self.bounds.ymax+1) full_bounds = _BoundsI(-No2, No2-1, -No2, No2-1) if self.bounds == full_bounds: # Then the image is already in the shape we need. ximage = self else: # Then we pad out with zeros ximage = Image(full_bounds, dtype=self.dtype, init_value=0) ximage[self.bounds] = self[self.bounds] dx = self.scale # dk = 2pi / (N dk) dk = np.pi / (No2 * dx) out = Image(_BoundsI(0,No2,-No2,No2-1), dtype=np.complex128, scale=dk) with convert_cpp_errors(): _galsim.rfft(ximage._image, out._image, True, True) out *= dx*dx out.setOrigin(0,-No2) return out
[docs] def calculate_inverse_fft(self): """Performs an inverse FFT of an `Image` in k-space to produce a real-space `Image`. The starting image is typically an `ImageCD`, although if the Fourier function is real valued, then you could get away with using an `ImageD` or `ImageF`. The image is assumed to be Hermitian. In fact, only the portion with x >= 0 needs to be defined, with f(-x,-y) taken to be conj(f(x,y)). Note: the k-space image will be padded with zeros and/or wrapped as needed to make an image with bounds that look like ``BoundsI(0, N/2, -N/2, N/2-1)``. If you are building a larger k-space image and then wrapping, you should wrap directly into an image of this shape. The input image must have a `PixelScale` wcs. The output image will be real (an `ImageD` instance) and its scale will be 2pi / (N dk), where dk is the scale of the input image. Returns: an `Image` instance with the real-space image. """ if self.wcs is None: raise GalSimError("calculate_inverse_fft requires that the scale be set.") if not self.wcs._isPixelScale: raise GalSimError("calculate_inverse_fft requires that the image has a PixelScale wcs.") if not self.bounds.isDefined(): raise GalSimUndefinedBoundsError("calculate_inverse_fft requires that the image have " "defined bounds.") if not self.bounds.includes(0,0): raise GalSimBoundsError("calculate_inverse_fft requires that the image includes (0,0)", PositionI(0,0), self.bounds) No2 = max(self.bounds.xmax, -self.bounds.ymin, self.bounds.ymax) target_bounds = _BoundsI(0, No2, -No2, No2-1) if self.bounds == target_bounds: # Then the image is already in the shape we need. kimage = self else: # Then we can pad out with zeros and wrap to get this in the form we need. full_bounds = _BoundsI(0, No2, -No2, No2) kimage = Image(full_bounds, dtype=self.dtype, init_value=0) posx_bounds = _BoundsI(0, self.bounds.xmax, self.bounds.ymin, self.bounds.ymax) kimage[posx_bounds] = self[posx_bounds] kimage = kimage.wrap(target_bounds, hermitian = 'x') dk = self.scale # dx = 2pi / (N dk) dx = np.pi / (No2 * dk) # For the inverse, we need a bit of extra space for the fft. out_extra = Image(_BoundsI(-No2,No2+1,-No2,No2-1), dtype=float, scale=dx) with convert_cpp_errors(): _galsim.irfft(kimage._image, out_extra._image, True, True) # Now cut off the bit we don't need. out = out_extra.subImage(_BoundsI(-No2,No2-1,-No2,No2-1)) out *= (dk * No2 / np.pi)**2 out.setCenter(0,0) return out
[docs] @classmethod def good_fft_size(cls, input_size): """Round the given input size up to the next higher power of 2 or 3 times a power of 2. This rounds up to the next higher value that is either 2^k or 3*2^k. If you are going to be performing FFTs on an image, these will tend to be faster at performing the FFT. """ return _galsim.goodFFTSize(int(input_size))
[docs] def copyFrom(self, rhs): """Copy the contents of another image """ if self.isconst: raise GalSimImmutableError("Cannot modify the values of an immutable Image", self) if not isinstance(rhs, Image): raise TypeError("Trying to copyFrom a non-image") if self.bounds.numpyShape() != rhs.bounds.numpyShape(): raise GalSimIncompatibleValuesError( "Trying to copy images that are not the same shape", self_image=self, rhs=rhs) self._copyFrom(rhs)
def _copyFrom(self, rhs): """Same as copyFrom, but no sanity checks. """ self._array[:,:] = self._safe_cast(rhs.array)
[docs] def view(self, scale=None, wcs=None, origin=None, center=None, make_const=False, dtype=None, contiguous=False): """Make a view of this image, which lets you change the scale, wcs, origin, etc. but view the same underlying data as the original image. If you do not provide either ``scale`` or ``wcs``, the view will keep the same wcs as the current `Image` object. Parameters: scale: If provided, use this as the pixel scale for the image. [default: None] wcs: If provided, use this as the wcs for the image. [default: None] origin: If provided, use this as the origin position of the view. [default: None] center: If provided, use this as the center position of the view. [default: None] make_const: Make the view's data array immutable. [default: False] dtype: If provided, ensure that the output has this dtype. If the original Image is a different dtype, then a copy will be made. [default: None] contiguous: If provided, ensure that the output array is contiguous. [default: False] """ if origin is not None and center is not None: raise GalSimIncompatibleValuesError( "Cannot provide both center and origin", center=center, origin=origin) if scale is not None: if wcs is not None: raise GalSimIncompatibleValuesError( "Cannot provide both scale and wcs", scale=scale, wcs=wcs) wcs = PixelScale(scale) elif wcs is not None: if not isinstance(wcs, BaseWCS): raise TypeError("wcs parameters must be a galsim.BaseWCS instance") else: wcs = self.wcs # Figure out the dtype for the return Image dtype = dtype if dtype else self.dtype # If currently empty, just return a new empty image. if not self.bounds.isDefined(): return Image(wcs=wcs, dtype=dtype) # Recast the array type if necessary if dtype != self.array.dtype: array = self.array.astype(dtype) elif contiguous: array = np.ascontiguousarray(self.array) else: array = self.array # Make the array const if requested if make_const: array = array.view() array.flags.writeable = False # Make the return Image ret = _Image(array, self.bounds, wcs) # Update the origin if requested if origin is not None: ret.setOrigin(origin) elif center is not None: ret.setCenter(center) return ret
[docs] def _view(self): """Equivalent to `view`, but without some of the sanity checks and extra options. """ return _Image(self.array.view(), self.bounds, self.wcs)
[docs] def shift(self, *args, **kwargs): """Shift the pixel coordinates by some (integral) dx,dy. The arguments here may be either (dx, dy) or a PositionI instance. Or you can provide dx, dy as named kwargs. In terms of columns and rows, dx means a shift in the x value of each column in the array, and dy means a shift in the y value of each row. In other words, the following will return the same value for ixy. The shift function just changes the coordinates (x,y) used for that pixel:: >>> ixy = im(x,y) >>> im.shift(3,9) >>> ixy = im(x+3, y+9) """ delta = parse_pos_args(args, kwargs, 'dx', 'dy', integer=True) self._shift(delta)
[docs] def _shift(self, delta): """Equivalent to `shift`, but without some of the sanity checks and ``delta`` must be a `PositionI` instance. Parameters: delta: The amount to shift as a `PositionI`. """ # The parse_pos_args function is a bit slow, so go directly to this point when we # call shift from setCenter or setOrigin. if delta.x != 0 or delta.y != 0: self._bounds = self._bounds.shift(delta) if self.wcs is not None: self.wcs = self.wcs.shiftOrigin(delta)
[docs] def setCenter(self, *args, **kwargs): """Set the center of the image to the given (integral) (xcen, ycen) The arguments here may be either (xcen, ycen) or a PositionI instance. Or you can provide xcen, ycen as named kwargs. In terms of the rows and columns, xcen is the new x value for the central column, and ycen is the new y value of the central row. For even-sized arrays, there is no central column or row, so the convention we adopt in this case is to round up. For example:: >>> im = galsim.Image(numpy.array(range(16),dtype=float).reshape((4,4))) >>> im(1,1) 0.0 >>> im(4,1) 3.0 >>> im(4,4) 15.0 >>> im(3,3) 10.0 >>> im.setCenter(0,0) >>> im(0,0) 10.0 >>> im(-2,-2) 0.0 >>> im(1,-2) 3.0 >>> im(1,1) 15.0 >>> im.setCenter(234,456) >>> im(234,456) 10.0 >>> im.bounds galsim.BoundsI(xmin=232, xmax=235, ymin=454, ymax=457) """ cen = parse_pos_args(args, kwargs, 'xcen', 'ycen', integer=True) self._shift(cen - self.center)
[docs] def setOrigin(self, *args, **kwargs): """Set the origin of the image to the given (integral) (x0, y0) The arguments here may be either (x0, y0) or a PositionI instance. Or you can provide x0, y0 as named kwargs. In terms of the rows and columns, x0 is the new x value for the first column, and y0 is the new y value of the first row. For example:: >>> im = galsim.Image(numpy.array(range(16),dtype=float).reshape((4,4))) >>> im(1,1) 0.0 >>> im(4,1) 3.0 >>> im(1,4) 12.0 >>> im(4,4) 15.0 >>> im.setOrigin(0,0) >>> im(0,0) 0.0 >>> im(3,0) 3.0 >>> im(0,3) 12.0 >>> im(3,3) 15.0 >>> im.setOrigin(234,456) >>> im(234,456) 0.0 >>> im.bounds galsim.BoundsI(xmin=234, xmax=237, ymin=456, ymax=459) """ origin = parse_pos_args(args, kwargs, 'x0', 'y0', integer=True) self._shift(origin - self.origin)
@property def center(self): """The current nominal center (xcen,ycen) of the image as a PositionI instance. In terms of the rows and columns, xcen is the x value for the central column, and ycen is the y value of the central row. For even-sized arrays, there is no central column or row, so the convention we adopt in this case is to round up. For example:: >>> im = galsim.Image(numpy.array(range(16),dtype=float).reshape((4,4))) >>> im.center galsim.PositionI(x=3, y=3) >>> im(im.center) 10.0 >>> im.setCenter(56,72) >>> im.center galsim.PositionI(x=56, y=72) >>> im(im.center) 10.0 """ return self.bounds.center @property def true_center(self): """The current true center of the image as a PositionD instance. Unline the nominal center returned by im.center, this value may be half-way between two pixels if the image has an even number of rows or columns. It gives the position (x,y) at the exact center of the image, regardless of whether this is at the center of a pixel (integer value) or halfway between two (half-integer). For example:: >>> im = galsim.Image(numpy.array(range(16),dtype=float).reshape((4,4))) >>> im.center galsim.PositionI(x=3, y=3) >>> im.true_center galsim.PositionI(x=2.5, y=2.5) >>> im.setCenter(56,72) >>> im.center galsim.PositionI(x=56, y=72) >>> im.true_center galsim.PositionD(x=55.5, y=71.5) >>> im.setOrigin(0,0) >>> im.true_center galsim.PositionD(x=1.5, y=1.5) """ return self.bounds.true_center @property def origin(self): """Return the origin of the image. i.e. the (x,y) position of the lower-left pixel. In terms of the rows and columns, this is the (x,y) coordinate of the first column, and first row of the array. For example:: >>> im = galsim.Image(numpy.array(range(16),dtype=float).reshape((4,4))) >>> im.origin galsim.PositionI(x=1, y=1) >>> im(im.origin) 0.0 >>> im.setOrigin(23,45) >>> im.origin galsim.PositionI(x=23, y=45) >>> im(im.origin) 0.0 >>> im(23,45) 0.0 >>> im.bounds galsim.BoundsI(xmin=23, xmax=26, ymin=45, ymax=48) """ return self.bounds.origin
[docs] def __call__(self, *args, **kwargs): """Get the pixel value at given position The arguments here may be either (x, y) or a PositionI instance. Or you can provide x, y as named kwargs. """ pos = parse_pos_args(args, kwargs, 'x', 'y', integer=True) return self.getValue(pos.x,pos.y)
[docs] def getValue(self, x, y): """This method is a synonym for im(x,y). It is a bit faster than im(x,y), since GalSim does not have to parse the different options available for __call__. (i.e. im(x,y) or im(pos) or im(x=x,y=y)) Parameters: x: The x coordinate of the pixel to get. y: The y coordinate of the pixel to get. """ if not self.bounds.isDefined(): raise GalSimUndefinedBoundsError("Attempt to access values of an undefined image") if not self.bounds.includes(x,y): raise GalSimBoundsError("Attempt to access position not in bounds of image.", PositionI(x,y), self.bounds) return self._getValue(x,y)
[docs] def _getValue(self, x, y): """Equivalent to `getValue`, except there are no checks that the values fall within the bounds of the image. """ return self._array[y-self.ymin, x-self.xmin]
[docs] def setValue(self, *args, **kwargs): """Set the pixel value at given (x,y) position The arguments here may be either (x, y, value) or (pos, value) where pos is a PositionI. Or you can provide x, y, value as named kwargs. This is equivalent to self[x,y] = rhs """ if self.isconst: raise GalSimImmutableError("Cannot modify the values of an immutable Image", self) if not self.bounds.isDefined(): raise GalSimUndefinedBoundsError("Attempt to set value of an undefined image") pos, value = parse_pos_args(args, kwargs, 'x', 'y', integer=True, others=['value']) if not self.bounds.includes(pos): raise GalSimBoundsError("Attempt to set position not in bounds of image", pos, self.bounds) self._setValue(pos.x,pos.y,value)
[docs] def _setValue(self, x, y, value): """Equivalent to `setValue` except that there are no checks that the values fall within the bounds of the image, and the coordinates must be given as ``x``, ``y``. Parameters: x: The x coordinate of the pixel to set. y: The y coordinate of the pixel to set. value: The value to set the pixel to. """ self._array[y-self.ymin, x-self.xmin] = value
[docs] def addValue(self, *args, **kwargs): """Add some amount to the pixel value at given (x,y) position The arguments here may be either (x, y, value) or (pos, value) where pos is a PositionI. Or you can provide x, y, value as named kwargs. This is equivalent to self[x,y] += rhs """ if self.isconst: raise GalSimImmutableError("Cannot modify the values of an immutable Image", self) if not self.bounds.isDefined(): raise GalSimUndefinedBoundsError("Attempt to set value of an undefined image") pos, value = parse_pos_args(args, kwargs, 'x', 'y', integer=True, others=['value']) if not self.bounds.includes(pos): raise GalSimBoundsError("Attempt to set position not in bounds of image", pos,self.bounds) self._addValue(pos.x,pos.y,value)
[docs] def _addValue(self, x, y, value): """Equivalent to `addValue` except that there are no checks that the values fall within the bounds of the image, and the coordinates must be given as ``x``, ``y``. Parameters: x: The x coordinate of the pixel to add to. y: The y coordinate of the pixel to add to. value: The value to add to this pixel. """ self._array[y-self.ymin, x-self.xmin] += value
[docs] def fill(self, value): """Set all pixel values to the given ``value`` Parameter: value: The value to set all the pixels to. """ if self.isconst: raise GalSimImmutableError("Cannot modify the values of an immutable Image", self) if not self.bounds.isDefined(): raise GalSimUndefinedBoundsError("Attempt to set values of an undefined image") self._fill(value)
[docs] def _fill(self, value): """Equivalent to `fill`, except that there are no checks that the bounds are defined. """ self._array[:,:] = value
[docs] def setZero(self): """Set all pixel values to zero. """ if self.isconst: raise GalSimImmutableError("Cannot modify the values of an immutable Image", self) self._fill(0) # This might be made faster with a C++ call to use memset
[docs] def invertSelf(self): """Set all pixel values to their inverse: x -> 1/x. Note: any pixels whose value is 0 originally are ignored. They remain equal to 0 on the output, rather than turning into inf. """ if self.isconst: raise GalSimImmutableError("Cannot modify the values of an immutable Image", self) if not self.bounds.isDefined(): raise GalSimUndefinedBoundsError("Attempt to set values of an undefined image") self._invertSelf()
[docs] def _invertSelf(self): """Equivalent to `invertSelf`, except that there are no checks that the bounds are defined. """ # C++ version skips 0's to 1/0 -> 0 instead of inf. _galsim.invertImage(self._image)
[docs] def replaceNegative(self, replace_value=0): """Replace any negative values currently in the image with 0 (or some other value). Sometimes FFT drawing can result in tiny negative values, which may be undesirable for some purposes. This method replaces those values with 0 or some other value if desired. Parameters: replace_value: The value with which to replace any negative pixels. [default: 0] """ self.array[self.array<0] = replace_value
[docs] def calculateHLR(self, center=None, flux=None, flux_frac=0.5): """Returns the half-light radius of a drawn object. This method is equivalent to `GSObject.calculateHLR` when the object has already been been drawn onto an image. Note that the profile should be drawn using a method that integrates over pixels and does not add noise. (The default method='auto' is acceptable.) If the image has a wcs other than a `PixelScale`, an AttributeError will be raised. Parameters: center: The position in pixels to use for the center, r=0. [default: self.true_center] flux: The total flux. [default: sum(self.array)] flux_frac: The fraction of light to be enclosed by the returned radius. [default: 0.5] Returns: an estimate of the half-light radius in physical units defined by the pixel scale. """ if center is None: center = self.true_center if flux is None: flux = np.sum(self.array, dtype=float) # Use radii at centers of pixels as approximation to the radial integral x,y = self.get_pixel_centers() x -= center.x y -= center.y rsq = x*x + y*y # Sort by radius indx = np.argsort(rsq.ravel()) rsqf = rsq.ravel()[indx] data = self.array.ravel()[indx] cumflux = np.cumsum(data, dtype=float) # Find the first value with cumflux > 0.5 * flux k = np.argmax(cumflux > flux_frac * flux) flux_k = cumflux[k] / flux # normalize to unit total flux # Interpolate (linearly) between this and the previous value. if k == 0: hlrsq = rsqf[0] * (flux_frac / flux_k) else: fkm1 = cumflux[k-1] / flux # For brevity in the next formula: fk = flux_k f = flux_frac hlrsq = (rsqf[k-1] * (fk-f) + rsqf[k] * (f-fkm1)) / (fk-fkm1) # This has all been done in pixels. So normalize according to the pixel scale. hlr = np.sqrt(hlrsq) * self.scale return hlr
[docs] def calculateMomentRadius(self, center=None, flux=None, rtype='det'): """Returns an estimate of the radius based on unweighted second moments of a drawn object. This method is equivalent to `GSObject.calculateMomentRadius` when the object has already been drawn onto an image. Note that the profile should be drawn using a method that integrates over pixels and does not add noise. (The default method='auto' is acceptable.) If the image has a wcs other than a `PixelScale`, an AttributeError will be raised. Parameters: center: The position in pixels to use for the center, r=0. [default: self.true_center] flux: The total flux. [default: sum(self.array)] rtype: There are three options for this parameter: - 'trace' means return sqrt(T/2) - 'det' means return det(Q)^1/4 - 'both' means return both: (sqrt(T/2), det(Q)^1/4) [default: 'det'] Returns: an estimate of the radius in physical units defined by the pixel scale (or both estimates if rtype == 'both'). """ if rtype not in ('trace', 'det', 'both'): raise GalSimValueError("Invalid rtype.", rtype, ('trace', 'det', 'both')) if center is None: center = self.true_center if flux is None: flux = np.sum(self.array, dtype=float) # Use radii at centers of pixels as approximation to the radial integral x,y = self.get_pixel_centers() x -= center.x y -= center.y if rtype in ('trace', 'both'): # Calculate trace measure: rsq = x*x + y*y Irr = np.sum(rsq * self.array, dtype=float) / flux # This has all been done in pixels. So normalize according to the pixel scale. sigma_trace = (Irr/2.)**0.5 * self.scale if rtype in ('det', 'both'): # Calculate det measure: Ixx = np.sum(x*x * self.array, dtype=float) / flux Iyy = np.sum(y*y * self.array, dtype=float) / flux Ixy = np.sum(x*y * self.array, dtype=float) / flux # This has all been done in pixels. So normalize according to the pixel scale. sigma_det = (Ixx*Iyy-Ixy**2)**0.25 * self.scale if rtype == 'trace': return sigma_trace elif rtype == 'det': return sigma_det else: return sigma_trace, sigma_det
[docs] def calculateFWHM(self, center=None, Imax=0.): """Returns the full-width half-maximum (FWHM) of a drawn object. This method is equivalent to `GSObject.calculateFWHM` when the object has already been drawn onto an image. Note that the profile should be drawn using a method that does not integrate over pixels, so either 'sb' or 'no_pixel'. Also, if there is a significant amount of noise in the image, this method may not work well. If the image has a wcs other than a `PixelScale`, an AttributeError will be raised. Parameters: center: The position in pixels to use for the center, r=0. [default: self.true_center] Imax: The maximum surface brightness. [default: max(self.array)] Note: If Imax is provided, and the maximum pixel value is larger than this value, Imax will be updated to use the larger value. Returns: an estimate of the full-width half-maximum in physical units defined by the pixel scale. """ if center is None: center = self.true_center # If the full image has a larger maximum, use that. Imax2 = np.max(self.array) if Imax2 > Imax: Imax = Imax2 # Use radii at centers of pixels. x,y = self.get_pixel_centers() x -= center.x y -= center.y rsq = x*x + y*y # Sort by radius indx = np.argsort(rsq.ravel()) rsqf = rsq.ravel()[indx] data = self.array.ravel()[indx] # Find the first value with I < 0.5 * Imax k = np.argmax(data < 0.5 * Imax) Ik = data[k] / Imax # Interpolate (linearly) between this and the previous value. if k == 0: rsqhm = rsqf[0] * (0.5 / Ik) else: Ikm1 = data[k-1] / Imax rsqhm = (rsqf[k-1] * (Ik-0.5) + rsqf[k] * (0.5-Ikm1)) / (Ik-Ikm1) # This has all been done in pixels. So normalize according to the pixel scale. fwhm = 2. * np.sqrt(rsqhm) * self.scale return fwhm
# Define a utility function to be used by the arithmetic functions below def check_image_consistency(self, im2, integer=False): if integer and not self.isinteger: raise GalSimValueError("Image must have integer values.",self) if isinstance(im2, Image): if self.array.shape != im2.array.shape: raise GalSimIncompatibleValuesError("Image shapes are inconsistent", im1=self, im2=im2) if integer and not im2.isinteger: raise GalSimValueError("Image must have integer values.",im2) def __add__(self, other): self.check_image_consistency(other) try: a = other.array except AttributeError: a = other return _Image(self.array + a, self.bounds, self.wcs) __radd__ = __add__ def _safe_cast(self, array): # Assign the given array to self.array, safely casting it to the required type. # Most important is to make sure integer types round first before casting, since # numpy's astype doesn't do any rounding. if self.isinteger: array = np.around(array) return array.astype(self.array.dtype, copy=False) def __iadd__(self, other): self.check_image_consistency(other) try: a = other.array dt = a.dtype except AttributeError: a = other dt = type(a) if dt == self.array.dtype: self.array[:,:] += a else: self.array[:,:] = self._safe_cast(self.array + a) return self def __sub__(self, other): self.check_image_consistency(other) try: a = other.array except AttributeError: a = other return _Image(self.array - a, self.bounds, self.wcs) def __rsub__(self, other): return _Image(other-self.array, self.bounds, self.wcs) def __isub__(self, other): self.check_image_consistency(other) try: a = other.array dt = a.dtype except AttributeError: a = other dt = type(a) if dt == self.array.dtype: self.array[:,:] -= a else: self.array[:,:] = self._safe_cast(self.array - a) return self def __mul__(self, other): self.check_image_consistency(other) try: a = other.array except AttributeError: a = other return _Image(self.array * a, self.bounds, self.wcs) __rmul__ = __mul__ def __imul__(self, other): self.check_image_consistency(other) try: a = other.array dt = a.dtype except AttributeError: a = other dt = type(a) if dt == self.array.dtype: self.array[:,:] *= a else: self.array[:,:] = self._safe_cast(self.array * a) return self def __div__(self, other): self.check_image_consistency(other) try: a = other.array except AttributeError: a = other return _Image(self.array / a, self.bounds, self.wcs) __truediv__ = __div__ def __rdiv__(self, other): return _Image(other / self.array, self.bounds, self.wcs) __rtruediv__ = __rdiv__ def __idiv__(self, other): self.check_image_consistency(other) try: a = other.array dt = a.dtype except AttributeError: a = other dt = type(a) if dt == self.array.dtype and not self.isinteger: # if dtype is an integer type, then numpy doesn't allow true division /= to assign # back to an integer array. So for integers (or mixed types), don't use /=. self.array[:,:] /= a else: self.array[:,:] = self._safe_cast(self.array / a) return self __itruediv__ = __idiv__ def __floordiv__(self, other): self.check_image_consistency(other, integer=True) try: a = other.array except AttributeError: a = other return _Image(self.array // a, self.bounds, self.wcs) def __rfloordiv__(self, other): self.check_image_consistency(other, integer=True) return _Image(other // self.array, self.bounds, self.wcs) def __ifloordiv__(self, other): self.check_image_consistency(other, integer=True) try: a = other.array dt = a.dtype except AttributeError: a = other dt = type(a) if dt == self.array.dtype: self.array[:,:] //= a else: self.array[:,:] = self._safe_cast(self.array // a) return self def __mod__(self, other): self.check_image_consistency(other, integer=True) try: a = other.array except AttributeError: a = other return _Image(self.array % a, self.bounds, self.wcs) def __rmod__(self, other): self.check_image_consistency(other, integer=True) return _Image(other % self.array, self.bounds, self.wcs) def __imod__(self, other): self.check_image_consistency(other, integer=True) try: a = other.array dt = a.dtype except AttributeError: a = other dt = type(a) if dt == self.array.dtype: self.array[:,:] %= a else: self.array[:,:] = self._safe_cast(self.array % a) return self def __pow__(self, other): result = self.copy() result **= other return result def __ipow__(self, other): if not isinstance(other, int) and not isinstance(other, float): raise TypeError("Can only raise an image to a float or int power!") self.array[:,:] **= other return self def __neg__(self): result = self.copy() result *= np.int64(-1) return result # Define &, ^ and | only for integer-type images def __and__(self, other): self.check_image_consistency(other, integer=True) try: a = other.array except AttributeError: a = other return _Image(self.array & a, self.bounds, self.wcs) __rand__ = __and__ def __iand__(self, other): self.check_image_consistency(other, integer=True) try: self.array[:,:] &= other.array except AttributeError: self.array[:,:] &= other return self def __xor__(self, other): self.check_image_consistency(other, integer=True) try: a = other.array except AttributeError: a = other return _Image(self.array ^ a, self.bounds, self.wcs) __rxor__ = __xor__ def __ixor__(self, other): self.check_image_consistency(other, integer=True) try: self.array[:,:] ^= other.array except AttributeError: self.array[:,:] ^= other return self def __or__(self, other): self.check_image_consistency(other, integer=True) try: a = other.array except AttributeError: a = other return _Image(self.array | a, self.bounds, self.wcs) __ror__ = __or__ def __ior__(self, other): self.check_image_consistency(other, integer=True) try: self.array[:,:] |= other.array except AttributeError: self.array[:,:] |= other return self
[docs] def transpose(self): """Return the tranpose of the image. Note: The returned image will have an undefined wcs. If you care about the wcs, you will need to set it yourself. """ bT = _BoundsI(self.ymin, self.ymax, self.xmin, self.xmax) return _Image(self.array.T, bT, None)
[docs] def flip_lr(self): """Return a version of the image flipped left to right. Note: The returned image will have an undefined wcs. If you care about the wcs, you will need to set it yourself. """ return _Image(self.array[:,::-1], self._bounds, None)
[docs] def flip_ud(self): """Return a version of the image flipped top to bottom. Note: The returned image will have an undefined wcs. If you care about the wcs, you will need to set it yourself. """ return _Image(self.array[::-1,:], self._bounds, None)
[docs] def rot_cw(self): """Return a version of the image rotated 90 degrees clockwise. Note: The returned image will have an undefined wcs. If you care about the wcs, you will need to set it yourself. """ bT = _BoundsI(self.ymin, self.ymax, self.xmin, self.xmax) return _Image(self.array.T[::-1,:], bT, None)
[docs] def rot_ccw(self): """Return a version of the image rotated 90 degrees counter-clockwise. Note: The returned image will have an undefined wcs. If you care about the wcs, you will need to set it yourself. """ bT = _BoundsI(self.ymin, self.ymax, self.xmin, self.xmax) return _Image(self.array.T[:,::-1], bT, None)
[docs] def rot_180(self): """Return a version of the image rotated 180 degrees. Note: The returned image will have an undefined wcs. If you care about the wcs, you will need to set it yourself. """ return _Image(self.array[::-1,::-1], self._bounds, None)
[docs] def depixelize(self, x_interpolant): """Return a depixelized version of the image. Specifically, this function creates an image that could be used with `InterpolatedImage` with the given x_interpolant, which when drawn with method=auto would produce the current image. >>> alt_image = image.depixelize(x_interpolant) >>> ii = galsim.InterpolatedImage(alt_image, x_interpolant=x_interpolant) >>> image2 = ii.drawImage(image.copy(), method='auto') image2 will end up approximately equal to the original image. .. warning:: This function is fairly expensive, both in memory and CPU time, so it should only be called on fairly small images (~100x100 or smaller typically). The memory requirement scales as Npix^2, and the execution time scales as Npix^3. However, the expensive part of the calculation is independent of the image values. It only depends on the size of the image and interpolant being used. So this part of the calculation is cached and reused if possible. If you make repeated calls to depixelize using the same image size and interpolant, it will be much faster after the first call. If you need to release the cache (since it can be a non-trivial amount of memory), you may do so using `Image.clear_depixelize_cache`. Parameters: x_interpolant: The `Interpolant` to use in the `InterpolatedImage` to describe how the profile should be interpolated between the pixel centers. Returns: an `Image` representing the underlying profile without the pixel convolution. """ ny, nx = self.array.shape npix = nx * ny # Each kernel is the integral of the interpolant over 1 pixel. unit_integrals = x_interpolant.unit_integrals(max_len=max(nx,ny)) # The rest of the implementation is done in C++. cf. src/Image.cpp im2 = self.copy() _unit_integrals = unit_integrals.__array_interface__['data'][0] _galsim.depixelizeImage(im2._image, _unit_integrals, unit_integrals.size) return im2
[docs] @staticmethod def clear_depixelize_cache(): """Release the cached solver used by depixelize to make repeated calls more efficient. """ _galsim.ClearDepixelizeCache()
def __eq__(self, other): # Note that numpy.array_equal can return True if the dtypes of the two arrays involved are # different, as long as the contents of the two arrays are logically the same. For example: # # >>> double_array = np.arange(1024).reshape(32, 32)*np.pi # >>> int_array = np.arange(1024).reshape(32, 32) # >>> assert galsim.ImageD(int_array) == galsim.ImageF(int_array) # passes # >>> assert galsim.ImageD(double_array) == galsim.ImageF(double_array) # fails return (self is other or (isinstance(other, Image) and self.bounds == other.bounds and self.wcs == other.wcs and (not self.bounds.isDefined() or np.array_equal(self.array,other.array)) and self.isconst == other.isconst)) def __ne__(self, other): return not self.__eq__(other) # Not immutable object. So shouldn't be used as a hash. __hash__ = None
[docs]def _Image(array, bounds, wcs): """Equivalent to ``Image(array, bounds, wcs)``, but without the overhead of sanity checks, and the other options for how to provide the arguments. """ ret = Image.__new__(Image) ret.wcs = wcs ret._dtype = array.dtype.type if ret._dtype in Image._alias_dtypes: ret._dtype = Image._alias_dtypes[ret._dtype] array = array.astype(ret._dtype) ret._array = array ret._bounds = bounds return ret
# These are essentially aliases for the regular Image with the correct dtype
[docs]def ImageUS(*args, **kwargs): """Alias for galsim.Image(..., dtype=numpy.uint16) """ kwargs['dtype'] = np.uint16 return Image(*args, **kwargs)
[docs]def ImageUI(*args, **kwargs): """Alias for galsim.Image(..., dtype=numpy.uint32) """ kwargs['dtype'] = np.uint32 return Image(*args, **kwargs)
[docs]def ImageS(*args, **kwargs): """Alias for galsim.Image(..., dtype=numpy.int16) """ kwargs['dtype'] = np.int16 return Image(*args, **kwargs)
[docs]def ImageI(*args, **kwargs): """Alias for galsim.Image(..., dtype=numpy.int32) """ kwargs['dtype'] = np.int32 return Image(*args, **kwargs)
[docs]def ImageF(*args, **kwargs): """Alias for galsim.Image(..., dtype=numpy.float32) """ kwargs['dtype'] = np.float32 return Image(*args, **kwargs)
[docs]def ImageD(*args, **kwargs): """Alias for galsim.Image(..., dtype=numpy.float64) """ kwargs['dtype'] = np.float64 return Image(*args, **kwargs)
[docs]def ImageCF(*args, **kwargs): """Alias for galsim.Image(..., dtype=numpy.complex64) """ kwargs['dtype'] = np.complex64 return Image(*args, **kwargs)
[docs]def ImageCD(*args, **kwargs): """Alias for galsim.Image(..., dtype=numpy.complex128) """ kwargs['dtype'] = np.complex128 return Image(*args, **kwargs)
# Put this at the end to avoid circular imports from .wcs import BaseWCS, PixelScale, JacobianWCS